If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-40x-60=0
a = 2; b = -40; c = -60;
Δ = b2-4ac
Δ = -402-4·2·(-60)
Δ = 2080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2080}=\sqrt{16*130}=\sqrt{16}*\sqrt{130}=4\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{130}}{2*2}=\frac{40-4\sqrt{130}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{130}}{2*2}=\frac{40+4\sqrt{130}}{4} $
| 40x+2.34x=189.5 | | (x+90)+(15+x)+x=180 | | 6.1=7.3-0.6x | | 6t-3t-t+t=3 | | 6x–5+2x=4(2x–1)–1 | | 9-2n=7 | | 2x+4+5x+85=180 | | 57.00+x=$63.96 | | 7=8+1x | | 5×m=355 | | 37.42=7g+3.54 | | 7-1/3x=5 | | p+21=2(11p) | | z+71=2(-z+40) | | 120=9(8x-11) | | 1/2=12/n | | y+42=2(y+20) | | 12x+-6=-10 | | 3.8+10m=8.34 | | w=w-38 | | p+20=2(p) | | 5(2+v)-v=10+4(v+1 | | z-9=2(z-36) | | -(2x)+1=3 | | 4x-5=-6(4x-1/2) | | (3,8)m=7 | | x+5=-2.5 | | -5.4-7.8x=-7.408 | | 4(x-4)=-2x-10 | | z=z-9 | | 8y-14=6y | | 5-10x(3)=30 |